

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6997-6998

Tetrahedron Letters

Crotomacrine, a new clerodane diterpene from the fruits of *Croton macrostachyus*

Pierre Tane,^{a,*} Simplice Tatsimo^b and Joseph D. Connolly^c

^aDepartment of Chemistry, University of Dschang, PO Box 67, Dschang, Cameroon ^bDepartment of Organic Chemistry, University of Yaounde I, PO Box 812, Yaounde, Cameroon ^cChemistry Department, University of Glasgow, G12 800 Scotland, UK

Received 22 June 2004; revised 20 July 2004; accepted 2 August 2004

Abstract—A new clerodane diterpene, crotomacrine 1, together with the known crotepoxide were isolated from the fruits of *Croton macrostachyus*. Their structures were elucidated on the basis of spectral evidence. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Croton macrostachyus Hochst. (Euphorbiaceae) is a tall tree widely distributed in mountainous forests and savannah of the tropical regions.¹ It has been reported that the genus *Croton* contains alkaloids,² flavonoids,³ and diterpenes.^{4,5} We have investigated the fruits of *C. macrostachyus* and report herein the isolation and structural elucidation of crotomacrine **1**, a new clerodane diterpene, along with the known crotepoxide **2**.⁶

Keywords: Croton macrostachyus; Euphorbiaceae; Crotoacrine; Clerodane diterpenoid.

2. Isolation and characterization of 1

The air-dried and ground fruits of *C. macrostachyus* (2.2kg) were successively extracted with hexane and MeOH. The hexane-soluble fraction (75g) was chromatographed on silica gel and eluted with hexane-EtOAc mixtures. Purification of fractions obtained with 10% hexane-EtOAc fractions afforded crotomacrine **1** (235 mg). Crotepoxide **2** (50 mg) was isolated from 30% hexane-EtOAc fractions after gel permeation on Sephadex LH-20.

Compound 1 was obtained as white needles in hexane-EtOAc, mp 203–205 °C, $[\alpha]_D$ –1.3 (*c* 0.085, CH₂Cl₂). The molecular formula $C_{21}H_{22}O_6$, was deduced from its ¹³C NMR spectral and CIMS $(m/z 371 [M+H]^+)$ data. UV absorptions λ_{max} 362 and 316 nm were characteristic of highly conjugated carbonyl systems.7 The band at $v_{\text{max}} 874 \text{ cm}^{-1}$ on the IR spectrum was indicative of a furan moiety.⁸ The ¹H NMR spectrum (Table 1) showed typical downfield signals of a β-substituted furan ring⁸ at δ 6.45 [1H, d, $J_{14.15} = 1.5$ Hz (H-14)], 7.43 [1H, d, $J_{15.14} = 1.5$ Hz (H-15)], and 7.50 [1H, br s (H-16)], three olefinic protons at δ 6.15 [dd, $J_{2.1,2.10} = 9.5$, 2.1 Hz (H-2)], 6.27 [ddd, $J_{1,2,1,3,1,10} = 9.3$, 5.4, 3.2 Hz (H-1)], 6.95 [d, $J_{3,1} = 5.4$ Hz (H-3)], and a chelated hydroxy group at δ 12.78, similar to that of 7-hydroxy-17-oxo-7,8-dehydro-8,17-dihydroconycephaloide.⁹ The chemical shift of H-12 (δ 5.68) required an oxygen function at C-12, which, according to the typical couplings of H-11, could be present as a lactone ring.⁹ From the ¹³C NMR spectral data (Table 1), two conjugated

^{*} Corresponding author. Tel.: +237 7619546; fax: +237 3451202; e-mail: ptane@yahoo.com

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.08.001

Table 1. NMR spectral data of compound **1** (CDCl₃, δ in ppm)

Position	$\delta_{\rm C}$, mult.	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\begin{array}{l} \text{HMBC} \\ (^{1}\text{H}\text{-}^{13}\text{C}) \end{array}$
1	125.4, d	6.27, ddd (9.3, 5.4, 3.2)	
2	132.8, d	6.15, dd (9.3, 2.1)	C-5, C-10, C-3
3	132.6, d	6.95, d (5.4)	C-2, C-18
4	137.1, s		
5	34.1, s		
6α	40.8, t	3.21, d (18.7)	C-19, C-10, C-7, C-8
6β		2.54, d (18.7)	
7	171.9, s		
8	100.5, s		
9	37.2, s		
10	50.2, d	2.46, dd (3.2, 2.1)	
11α	43.8, t	1.69, t (12.8)	
11β		2.34, dd (12.8, 4.0)	C-8, C-20, C-12
12	71.9, d	5.68, dd (12.8, 4.0)	C-13, C-16
13	125.3, s		
14	108.9, d	6.45, d (1.5)	C-15, C-16
15	144.1, d	7.43, d (1.5)	
16	140.1, d	7.50, br s	
17	170.9, s		
18	167.3, s		
19	21.9, q	1.27, s	C-5, C-4, C-10
20	19.3, q	1.45, s	C-9, C-8, C-10
21	52.0, q	3.78, s	C-18
OH		12.78, s	C-8, C-6, C-7

NMR spectra were acquired on a BRÜKER DPX-400 spectrometer in CDCl₃, 400 MHz for ¹H and 100 MHz for ¹³C.

Figure 1. Selected NOESY correlations for 1.

carbonyl functions of an ester (δ 167.3, s) and a lactone (δ 170.9, s) were deduced. Furthermore, signals of a methoxyl group (δ 52.0, q), and an enolic function (δ 171.9, s) were also observed.

The carbon skeleton of 1 was established by analysis of the ²D NMR experiments [HMQC, COSY and HMBC (Table 1)]. From the ¹H–¹H COSY spectrum, it was possible to distinguish the proton sequences H-10/H-1, H-1/ H-2, H-2/H-3, and H-11/H-12. In the HMBC spectrum pertinent correlations of H-19 to C-5, C-4, C-10 and of H-20 to C-9, C-8, and C-10 indicated that Me-19 and Me-20 were attached to C-5 and C-9, respectively. Further HMBC connectivities of H-12 to C-13 and C-16 placed the furan ring at C-12. That the ester function was at C-4 was deduced from the correlation of H-3 to C-18.

The relative stereochemistry of **1** was determined by the NOESY experiments (Fig. 1), which revealed pertinent correlations between H-12 and H-10; Me-19, H-6 β and H-10; Me-20 and H-11 α . On the basis of all the NMR data, we were able to complete the structure elucidation of **1**, which is a new clerodane diterpene derivative, trivially named crotomacrine.

The spectral data of crotepoxide were all in agreement with those previously published.⁶

Acknowledgements

Financial support from the International Science Program, Uppsala University, Sweden is gratefully acknowledged.

References and notes

- 1. Troupin, G. Flore du Rwanda, Spermaphytes; Bruxelles 1983; Vol. 2, p 216.
- 2. Stuart, K. L.; Byfield, D. Y. Phytochemistry 1971, 10, 460-462.
- Barton, D. H. R.; Bhakuni, D. S.; Chapman, G. M.; Kirby, G. W.; Haynes, L. J.; Stuart, K. L. J. Chem. Soc. 1967, 1295–1298.
- 4. Craveiro, A. A.; Edilberto, R. S. *Phytochemistry* **1982**, *21*, 2571–2574.
- Sato, A.; Masaaki, K.; Akira, O.; Harumitsu, K. Phytochemistry 1981, 20, 1915–1918.
- Kupchan, S. M.; Hemingway, R. J.; Coggon, P.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1968, 90, 2982–2983.
- Yu, Bb.-W; Meng, L.-H.; Chen, J.-Y.; Zhou, T.-X.; Cheng, K.-F.; Ding, J.; Qin, G.-W. J. Nat. Prod. 2001, 64, 968–970.
- Tane, P.; Kamdem, W. H.; Ayafor, F. J.; Sterner, O. Phytochemistry 1997, 46, 165–167.
- Bohlmann, F.; Wegner, P. *Phytochemistry* 1982, 21, 1693–1695.